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SUMMARY 
A method is developed to solve elliptic singular perturbation problems. Examples are presented in one and 
two dimensions for both linear and non-linear problems. In particular, examples are presented for fluid flow 
problems with boundary layers. In the one-dimensional case an approximating equation is developed using 
just three points. The method first presented is a fourth-order approximation but is extended to become a 
higher-order method. Results are included for the fourth-, sixth-, eighth- and tenth-order methods. 

The results are first compared with results found by Segal in an article about elliptic singular perturbation 
problems. The elliptic singular perturbation problems are compared with a method by Il’in and also with 
central and backward difference schemes from Segal’s article. There was only one case where the results in 
Segal’s paper were as accurate as the results presented in this paper. However, in this case the method used by 
Segal did not give accurate values for a second problem presented. The results are also compared with 
results given by Spalding and by Christie. 

The method of this paper was also tested on the solution of some non-linear diffusion equations with 
concentration-dependent diffusion coefficients. The results were superior to results presented by Lee and by 
Schultz. Finally, the method is extended to several two-dimensional problems. 

The method developed in this paper is accurate, easy to use and can be generalized to other problems. 

KEY WORDS Finite differencing Iterative methods Convectiondiffusion Boundary layer 

1. INTRODUCTION 

In this paper we have developed and tested a method for the convection-diffusion equation that 
can be used for small values of the viscosity coefficient. This equation is a simple model of the 
Navier-Stokes equations at high Reynolds numbers. The method is compared with a number of 
other methods. 

An article by Segal’ compared several methods for solving one- and two-dimensional problems 
governed by particular Navier-Stokes equations. The model in the article is a 
convection-diffusion equation 

- &f.p + u.vf.p = f ,  (1) 

where E is the viscosity coefficient (or diffusion coefficient) and u is the flow velocity vector.’-13 
Specific equations are described in Section 2. Most of the problems considered in the article have 
known solutions. Therefore the results are given as the maximum error between the numerical 
approximation and the exact solution. 

In the one-dimensional case, this paper develops a method that uses only three points in the 
approximating equation. In all cases (except one where the results were comparable) it was more 
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accurate than the methods described in References 1, 3, 4, 7, 13 and 14. The numerical 
approximations of this method can be developed as a second- or higher-order method. Section 3 
includes the development of the equations needed, and results are included for the fourth-, sixth-, 
eighth- and tenth-order cases. 

Lee'5 presented results for the problem of diffusion equations with concentration-dependent 
diffusion coefficients. He used a shooting technique and a fourth-order Runge-Kutta method. 
S c h ~ l t z ' ~  presented a finite difference method for the same problem which was more accurate and 
faster than Lee's method. The method of this paper is both faster and more accurate than that of 
Reference 16. 

The results in Section 3 are from equations given in Segal's article' and from Lee'sI5 and 
Schultz's16 papers. This allowed us to compare our results with an exact solution and also with 
other methods. By computing the maximum-error we were able to determine which of the 
methods gave a better approximation. We not only obtained accurate results, but used only one 
method which could be generalized to all of the problems. 

In particular, the method was extended to several two-dimensional problems, includng one 
involving a boundary layer. 

Other methods proposed for similar differential equtions include those of References 3-5,9,10, 
13 and 17. 

Patankar' pointed out that the exponential scheme when used for the steady one-dimensional 
problem will give the exact solution. However, it is not widely used because exponentials are 
expensive to compute, the technique is problem-dependent and is not exact for two or three 
dimensions. The extra expense of computing the exponentials does not seem to be justified. 
Locally exact solutions were first employed by Allen and S~u thwe l l ' ~  and Spalding13 and is one 
of the methods used by Raithby and Torrance." However, for cell Reynolds numbers of order 
unity or smaller the truncation error reduces to O(Ax2, Ay'), while for larger cell Reynolds 
numbers the truncation error approaches that for upstream differencing. In some cases the 
truncation error may be larger than for upstream differencing. The methods presented in this 
paper offer high-order accuracy without resorting to exponential differencing. The hybrid scheme 
developed by S ~ a l d i n g ' ~  is a combination of central and upwind differences. That is, it is second- 
order over only a part of the range. The power law difrerence scheme is more complicated than 
the hybrid scheme, but is identical to it for the absolute value of 1/& > 10. 

Chen' proposed the finite-analytic method, which incorporates local analytic solutions in the 
numerical methods. However, this technique is very problem-dependent and he presented results 
only up to a Reynolds number of lo3. 

Christie and co-workers3' solved a similar problem using a high-order Galerkin method. The 
tenth-order scheme presented in this paper gave superior results on the same problem. Note that 
we could develop even higher-order methods than tenlh-order for the one-dimensional problem. 

2. STATEMENT OF THE PROBLEMS 

In Segal's article the one-dimensional case was included to study the effect of a vertical boundary 
layer of width O(E) at x = I. We have included three problems from the article for this case. The 
general form of each of these equations is 

d 2 4  d 4  - & - + u - - = q ,  
dx2 dx 

with &(O) = 0 and &(1) = 0 or &(1) = 1, depending on the problem. The values for E and u are 
considered to be constant, with E defined as the viscosity coefficient and u held constant at unity. 
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Although E is a constant, different values were used for each problem, varying E from 10- to 
lo-'. For a specific problem, q is either zero or a function of x. 

In the articles by Lee" and Schultz'6 the problem to be considered is 

with s = 1 at x = 0 and s = 0 at x = + 00. The problem is considered for various values of A .  
The x-axis was subdivided into n subintervals of equal length h = A x =  l /n ,  with the points 

labelled x i ,  x2,  x3, . . . , x,, 1. Segal split the interval [O, 11 into the intervals [O, 1 - 881 and 
[l - 8 ~ ,  11 and then subdivided each of these intervals. We did not find it necessary to do this 
until E was decreased to E = 

For all of the one-dimensional problems considered it was possible to obtain approximating 
equations of order two or higher with just three points. The approximating equations are 
developed in Section 3. A separate equation was needed for the divided interval since the lengths 
of the subdivisions on either side of the dividing point were not equal. This equation is also 
included in Section 3. The generalized Newton method and the Gauss elimination method for 
tridiagonal systems'* -20 were used to solve the resulting systems of equtions. 

The method was also extended to several two-dimensional problems. The first problem is 
defined by the equation 

and E = lo-'. 

bXx + # y y  - 0 4 ~  + 27t2 sin(nx) sin (ny) + no cos (nx) sin (ny )  = 0, 

with the Dirichlet condition 

#(O, Y )  = 0, #(L Y )  = 0,  #(x, 0) = 0, 4% 1) = 0 .  

The second problem is the same except for a Neumann boundary condition at x = 1. The exact 
solution is 

#(x) = sin (nx) sin (ny) .  

These problems were also considered by Segal. 

defined by the equation 

with the boundary conditions 

The third problem was considered by Strikwerda" and has a boundary layer. The problem is 

$xx + #yy + o 4 x  = 0, 

2x 
#(x, 1) = - - e - 0 ~  

o 

The exact solution is 

o 

3. METHOD 

The first case to be considered is 

- E#"(X) + #'(x) = 0, 
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with boundary conditions 

d(0) = 0, 4(1) = 1.0. (3) 

3.1. Development of a three-point, fourth-order method 

To develop the equations for the fourth-order method, equation (2) is rewritten in the form 

4”(x) - oO’(x) = 0, (4) 
where o = 1 / E .  

The interval [0, 11 is divided into n equal subdivisions, each of length h = 1 / n .  This gives n - 1 
function values to be found in the interval. The differential equation will be approximated using 
three points arranged on the x-axis as in Figure 1. Point 0 corresponds to x i .  

At each xi we want to find ao, a, and a3 such that 

4 ” ( x )  - w 4 ’ ( x )  7s a040 + a141 + a343-  ( 5 )  

We use the Taylor series to expand about the point qho to obtain 

h2 h3 
4 ” ( x )  - o 4 ’ ( x )  ZZ a040 +a,  4 0  + h4”xo) + y 4 ” ( x o )  + 6 4 ” ’ b O )  

h4 
24 

) h5 h4 + - 4(4)(x0) + ~ 4(5)(x0) + . . . 
24 120 

( 

h2 h3 
4o - h@(xo)  + @‘(xo) - 4“‘(xo) + - qS4)(x0) 

We rewrite equation (4), take its derivative twice and get the derivatives for @”(x) and 4 ( “ ) ( x )  in 
terms of $”(x). This gives 

4”(x) = w4’ (x ) ,  

O”’(x)= wc#l”(x), 

4‘4’(x) = o 2 4 ” ( x ) .  
Substituting (7) into (6) gives 

h5 
24 120 

w24“ (xo ) )  + __ 4(5)(x0) + . . . 

4 0  - h 4 ‘ ( x o )  + - 4“(x0) - -7 w ~ ” ( x , )  
hZ h3 
2 0 

h4 h5 
24 120 

+ - 0 * # “ ( X O )  - ~ 4 ( 5 ) ( x 0 )  + . . . 
Setting corresponding coefficients equal gives the following system of equations: 

a0 + a1 + c(3 = 0,  

(7) 
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I h ,  h ,  
‘3 ‘ 0  1 -  

i + 1  x .  x .  x 1-1 1 

Figure 1. Arrangement of approximating points 

This system is solved to find the values of the a; 

24 + 12hw + 4h2w2 + h3w3 
a3 = 

a, = a3 - w / h ,  

a0 = - a1 - u3. 

The error term comes from the Taylor series expansion in (6) and is given by 

24h2 + 2h402 1 

which is O(h4). We now have a fourth-order method using just three points. 

3.2. Higher-order methods 

To obtain a higher-order method, we add more terms to the Taylor series expansion in (6). It is 
necessary to add two terms to get a sixth-order method, four terms for an eighth-order method, 
six terms for a tenth-order method, etc. Since the order of the method depends on the two error 
terms in (13) having opposite signs, the order will always be an even number. 

The Taylor series expansion for a sixth-order‘method is carried out to the seventh-derivative 
term. We also need the values found for the derivatives in (7) along with 

$ J ( ~ ) ( X ~ )  = w24”’(xo)  = w34”(x0 ) ,  

4@)(x0) = a3#”(xO) = w4@’(x0) 

to replace the derivatives of order three or greater in the Taylor series. Solving the system as 
before, we get a. and a1 as in (12) and 

(15) 
720 + 360wh + 1200~ h2 + 30w3 h3 + 6w4h4 + w5 h5 

2(360h2 + 30h4w2 + h6w4) 
a3 = 

The error term is found from the Taylor series expansion and is given by 

This method was also extended to eighth- and tenth-order methods by simply adding more 
terms to the Taylor series expansion about 4o and solving the system of equations for a j ,  since a. 
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and a1 do not change. The coefficient a3 is given by 

40320 + 20 160wh + 6720w2h2 + 1680w3h3 + 336w4h4 + 56w5h5 + 8w6h6 + w7h7 
40 320h2 + 3360h4w2 + 1 12h6w4 + 2w6h8 u3 = 

for the eighth-order method and 

where 
u3 = AB, 

1 8 14 400 
1 814400h2 + 151 2Wh4w2 + 5040h"w4 + 90h8w6 + h'Ow8 ' 

A =  

h3 h4 h' h6 h7 
B = i + -  -++-++2-+w3- -+w4-++5- -  5040 w ( h 2  h 2  6 24 120 720 

h9 + w  8 --) h" 
3 628 800 ' + w7- + w6- 

h8 
40 320 362 880 

for the tenth-order method. 

3.3. Equation for the dividing point 

As w in equation (4) was increased (or E was decreased), it was necessary to use a divided 
interval to obtain accurate results. The left side of the interval, [0, 1 - 8 ~ 1 ,  was divided into n 
subdivisions, each of length 

k = (1 - 8~)/n. 

The right side of the interval, [l - 8 ~ ,  11, was divided into m subdivisions, each of length 

h = 8t/m. 

Since the original equation was developed for equal subdivisions and this is no longer true at the 
dividing point, a new equation was developed for this point. 

The equation used at the dividing point for the fourth-order case was also developed using 
three points as before. The point were arranged as in Figure 2. 

For the fourth-order method the Taylor series expansion for the dividing point was carried out 
to the seventh-derivative term in order to obtain a more accurate solution. With equal sub- 
divisions this number of terms in the Taylor series expansion gave a sixth-order method in 
Section 3.2. With unequal subdivisions, however, the error term in (18) contains u3,  which does 
not drop out as it did in (16), and the error is not as small. Therefore more terms were used to 
increase the accuracy. 

The following results were obtained for the dividing point: 

uo = - c11 - u3,  

k w  
h h  

a, = cL3 - - -, 

1 
h l  

0 
Figure 2. Arrangement of points at the dividing point 

I k 
3 

1 
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720 + 360091 + 120hZo2 + 30h3m3 + 6 h 4 0 4  + h 5 0 5  
360hk + 120h2kw + 30h3k02  + 6h4k03  + h 5 k 0 4  + 360k2 - 120 k 3 0  + 30k4m2 - 6 k 5 0 3  + k 6 0 4 '  

a3 = 

The largest error term is 

1 
4'7'(x0) 5040 [ a , k ( h 6  - k 6 )  - W h 6 1 .  

3.4. Results 

Segall divided the interval into the two subdivisions 

[0, 1 - 8 e ]  and [l - 8 ~ ,  1 3 .  

Each of these subdivisions used ( n  + 1)/2 points and equal spacing. The methods used were a 
central difference scheme, a backward difference scheme and the Il'in method.14 The results are 
given for the two most accurate methods, the central difference scheme and the Il'in method, for 
n = 21 and n = 41 in Table I. See Figure 3 for a comparison of the methods of this paper with the 
central difference scheme. Figure 4 compares the results of the three different schemes with the 
exact solution using only three points (h = 1/2). It corresponds to Figure 4 in Spalding's paper.13 

We checked our method by first using a uniform grid spacing of h = l/n. As E decreased, we 
found we could obtain better results if we split the interval into two subintervals, [O, 1 - 861 
and [l - 88, 1). 

Table I. Maximum error for central difference and Il'in meth- 
ods from Segal's paper with (n + 1)/2 nodes for each subinterval 

~ ~~~ 

Method n & =  10-2 & =  10-3 & =  10-4 & =  10-5 

Central 21 0.021 0021 0.021 0.021 
difference 41 0005 0005 0.005 0.005 
Il'in 21 10-7 10-15 10-15 10-15 

41 10-5 10-15 10-1s 10-15 

- . 3  
0 

Figure 3. The curved line is the exact solution of problem 1. The results of the methods of this paper (sixth, eighth and 
tenth order) fall exactly on this curve. The dots are the corresponding results from the central difference method. N = 10, 

w = 1/e = 40 
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Figure 4. Dependence of the solution at the midpoint according to the exact solution (problem 1) and to three finite 
difference methods. SIX is the sixth-order method of this paper. CDS is the central difference method. UDS is the upward 

difference method. Note exact and SIX solutions coincide. h = 1/2 (only three points used) 

Table 11. Maximum error for fourth-order method, problem 1 

n Maximum n Maximum n , m  Maximum n , m  Maximum 
error error error error 

40 0.05 
80 0.005 500 0.02 

125" 0.0008 1250 00008 1000,lO 0.0008 1O00,lO NR 
250b OW005 2500 0.00005 1000,20 0-0001 1O00,20 O W 0 4  

1000,40 0.0003 

n is the number of subdivisions. 
n, m corresponds to n subdivisions in the interval [0, 1 - SE] and m subdivisions in the interval [l - 8 ~ ,  11 
a Row corresponds to n = 21 in Segal's results in Table I. 

Row corresponds to n = 41 in Segal's results in Table I. 
NR: no results. 

The maximum error for each subdivision is summarized in Tables 11,111, IV and V for methods 
of order four, six, eight and ten respectively. Since the exact value is known for these problems, the 
maximum error is the absolute value of the difference between the approximate and exact 
values, or 

maximum error = max 1 approximate value - exact value I. 
Even though the number of subdivisions had to be increased to obtain the results in 

Tables 11-V, the number of iterations did not become a prohibitive number. In Table 11, with 
2500 subdivisions and E = 10- 3, only 67 iterations were required for convergence. For the eighth- 
order method in Table IV, 351 iterations were required for convergence of 25000 subdivisions 
with E = 10- '. 6n Table V, 25 000 subdivisions for E = 10- ' required 427 iterations for con- 
vergence. This huge number of subdivisions was used only to show the stability of the method and 
the ease of solving the large system. 

To compare the accuracy for each of the methods given in Tables 11-V, consider the case when 
E = 10- '. For the fourth-order method the maximum error for n = 250 is given in Table I1 as 
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Table 111. Maximum error for sixth-order method, problem 1 

& = 10-2 = 10-3 E =  10-4 & = 10- 

n Maximum n Maximum n , m  Maximum n, m Maximum 
error error error error 

500 0.003 
125” 0.00001 1250 0.00001 3000,lO OM)005 3000,lO NR 
250b 0~000001 2500 0~0000003 3000,20 090004 3000,20 OW03 

a,  See footnotes to Table 11. 

Table IV. Maximum error for eighth-order method, problem 1 

E = 10-2 E =  1 0 - 3  E = 10-4 & =  10-5 

n Maximum n Maximum n Maximum n , m  Maximum 
error error error error 

~ ~ ~ ~ ~~~~ 

125” 09000003 1250 0~0000003 12500 0~000002 3000,lO 0.008 
250b 0~0000001 2500 0~0000001 25000 0.0000003 3000,20 0000006 

a. See footnotes to Table 11. 

Table V. Maximum error for tenth-order method, problem 1 
-~~~ 

= 10-4 E = 10-5 & = 10-2 & = 1 0 - 3  
- ~ ~~ 

n or Maximum n or Maximum n o r  Maximum n, m Maximum 
n, m error n, m error n, m error error 

20 
40 
80 

100 
500 

20,20 
40,40 

100, 100 
IOOO, 100 

0.005 500 0~000005 1000 0.7 x 3000, 10 OOOOOO4 
OG€Q03 1000 0.8 x lo-’ 4000, 100 0.2x 
0.5 x 2000 0.7 x lo-”  5000, 100 0 . 2 ~  10-7 

0.1 x 10- 3 4000,ioo 0 2  x 10- 12 

0.2 x 10-13 

0.8 x lo-* 5000 0.1 x 10-11 6900, 100 0.7 x 10- 
0.2 x 10- l 3  1000, 100 015 x 10- l o  1oo00, 100 0 2  x 10- l 1  

0.8 x 
0.7 x lo-’’ 

5 x lo-’. The sixth-order method already has an error of for n = 125 subdivisions. 
In Table IV the error is 10- for 125 subdivisions, and for the tenth-order method the error 
is 5 x 10- ’ for 80 subdivisions and 10- l 3  for 500 subdivisions.. 

It was found that better results could be obtained if we did not divide the region into the two 
subregions [0, 1 - 881 and [l - 8 ~ ,  11, but instead used the subregions [0,0.999] and [0999,1.0]. 

The results are given in TableVI. The equations were solved by the direct method for 
tridiagonal systems. Note that we had no trouble solving the system even up to loo00 equations. 

The problem was also run on the IMSL routine DVCPR. This routine solves boundary value 
problems using a variable order method with deferred corrections. The method worked only for 
E = 0.01 and E = 0.001. It would not work for smaller E. The best result for E = 0.001 was a 
maximum error of 0.4 x 10- with 300 points. 
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3.5. Development of the fourth-order equation for the second problem 

The second problem to be considered is 
- 

with 

E ~ ” ( x )  + Cp’(x) = en2 sin(nx) + n cos (nx), 

Cp(O)= 0, 4(l) = 1. 

The equation was rewritten as 

@(x) - o@(x) + n2sin(nx) + on cos(nx) = 0 .  

This equation is again approximated by three points, arranged as in Figure 1. To obtain high- 
order methods for this problem, we had to include a term a4 (see equation (21)). 

The Taylor series expansion is again used to approximate the left-hand side of (20) as follows: 

#’(x) - o@(x) + n2 sin(nx) + wn cos(nx) x aobo + a1 41 + a343 + a4 

h2 h3 h4 h5 
24 120 + a3 ( 4o - h@(x0)  + @‘(xo) - 4”’(xo) + - @4)(x0) - - 4(5) (xo) + . . . 

(21) 
When 4”’(x) and 4(4)(x) are written in terms of 4”(x) we obtain the approximating equation as 
before. 

The values for ao, a, and a3 are the same as in (12), and a4 is given as 

a4 = - a3 - [a2 n2 sin (nx) + n4 sin (nx)] 

h3 
24 

+ - [ - 720 cos (nx) + 02n2sin (EX)] (;; ) ?  
(22) + - [n2w3 sin (nx) + o n 4  sin (nx)] + n2 sin(nx) + on cos (nx). 

The error term is the same as in (13), which makes this method O(h4).  

3.6. Higher-order methods for the second problem 

The higher-order methods are obtained in a way similar to that of Section 3.2. That is, two 
more terms are needed to obtain a sixth-order method, four terms for an eighth-order method, 
etc. The sixth-order values for ao, a1 and a3 are the same for the second problem as those for the 
first. The difference here is that the term a4 must be calculated. 

When simplified, the sixth-order value for a4 is 

h6 
360 

[w2 n2 sin (nx) + n4 sin (nx)] + - [04n2 sin (nx)  - n6 sin (nx)] 

h4 
24 

[ - n3 cos(nx) + on2 sin (nx)] + - [ 0 2 n 2  sin (nx) + n4 sin (nx)] 

h5 h6 
120 720 + ~ [w3 nz sin (nx) + n5 cos (nx)] + __ [w4n2 sin (nx) - n6 sin (nx)] 

+ n2 sin(nx) + oncos(nx). 
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The approximating equation then is 

@'(x) - w@(x) + n2sin(zx) + uncos(nx) = cto#o + cr141 + ct3& + ct4. 

Even though it may appear that u4 will become too difficult to work with as the order of the 
method increases, it is actually only a matter of adding terrns to the ct4 of the previous order. Thus 
we can theoretically develop an arbitrarily high-order met hod. Eighth- and tenth-order methods 
were also developed. 

3.7. Results for the second problem 

Segal again used an interval divided as before with (n f l)/2 points in each interval and equal 
spacing. The same three methods were used: backward difference, central difference and Il'in 
method. 

From Table VII it can be seen that the central difference method O(h2)  gave similar errors as 
for problem 1. However, the errors for the Il'in scheme, which had been very accurate for the first 
problem, were closed to those of the backward scheme, which is an O(h) method. 

The maximum error for the method from Sections 3.5 and 3.6 is summarized in Tables VIII-XI 
for fourth, sixth, eighth and tenth orders. 

For E =  to the results in Tables VIII-XI are significantly better than Segal's in 
Table VII for comparable subdivisions. The eighth- and tenth-order methods gave errors as small 
as 0 2  x 10- l 3  as compared to 0.005 in Table VII. For E = 10- * in all methods, however, it was 
necessary to use a very small overrelaxation factor of 00125 and initial values from the E = 
run in order to obtain a converged solution. Better results were then obtained by using the direct 
method for a tridiagonal system (Table XI). 

Note that for n = 100 and E = 10- the central approximation had an error of 0034 while our 
tenth-order method had a maximum error of 0000000 1. For E = the best result for the 

Table VII. Segal's maximum error from Reference 1 

Method n E = ~ o - *  ~ = 1 0 - '  ~ z 1 0 - 4  ~ = 1 0 - - 5  

Central 21 0.022 0.02 1 0.02 1 0.02 1 
41 0005 0.005 0.005 0.005 

Backward 21 0.279 0.305 0309 0.309 
41 0.140 0.155 0.156 0.156 

Il'in 21 0.212 0.299 0.308 0.309 
41 0.08 1 0.149 0.156 0.1 56 

Table VIII. Maximum error for fourth-order method, problem 2 

& =  10 -2  E =  =: 10-4 c: = 10- 5 

n Maximum n o r  Maximum n , m  Maximum n , m  Maximum 
error n, m error error error 

~ ~~ 

125" 09008 1250 0.0006 3000, 10 0.0009 
250b OMM)O5 500, 20 0.00008 3000, 20 0.0002 3000, 20 0,002 

3000,40 0.002 
~~ ~ 

a. See footnotes to Table 11. 
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Table IX. Maximum error for sixth-order method, problem 2 

& = 10-2 & =  1 0 - 3  & = 10-4 E =  10-5 
~ ~~~ 

n Maximum n Maximum n, rn Maximum n, m Maximum 
error error error error 

80 0.0002 500 0.003 
125" 0.00001 1250 0.00002 3000, 10 000006 3000, 10 NR 
250b 0.000002 2500 0~00001 3000,20 000004 3000, 20 0.002 

3000,40 0,002 

a, See footnotes to Table 11. 

Table X. Maximum error for eighth-order method, problem 2 

& = 10- = 10-3 = 10-4 = 10-5 

n Maximum n Maximum n, m Maximum n , m  Maximum 
error error error error 

80 0000005 500 04)002 
125" 0~0000005 1250 0~000001 3000, 10 OW0006 3000, 10 NR 
250b 00000002 2500 0~0000005 3000, 20 OW0005 3000,20 NR 

3000,40 OGQ5 

a. See footnotes to Table 11. 

Table XI. Maximum error for tenth-order method, problem 2 

& = 1 0 - 2  = 10-3 E = 10-4 = 10-5 

n or 
n, m 

Maximum 
error 

80 
200 

1000 
20,20 

100, 100 
1000,100 

0.1 x 10-6 
0.7 x 10- l 1  

0.1 x 10-13 
0.000 1 
0.7 x lo-" 
0.2 x 10- l 3  

n or Maximum n o r  Maximum n, m or Maximum 
n, m error n, m error n error 

400 0.00004 2000 0-006 3000,lO NR 
500 0~000006 5000 0~000006 25000 0.0095 
750 0.1 x 7000 0.2 x 45000 0~0007 
1000 0.7 x 10000 0.7 x 

lo000 0.15 x lo-'' 3000, 10 0000005 
1000, 100 0.15 x 10- l o  4000, 10 0.2 x 
4000, 100 0-2 x 10- l 2  

central approximation was a maximum error of 0.004 for n = 40000 while our method had an 
error of 0~0000002 for n = 7000. 

It was again found that better results could be obtained if we did not divide the region into the 
two subregions [O, 1 - 8 ~ 1  and [l - 8-5, 11, but instead used the subgregions [0, 09991 and 
C0.999, 1.01. 

we were able to obtain a 
maximum error of 0.1 x lop6. For E =  lo-* the best maximum error was 0.1 x 

The results are given in Table XII. Note that even for E = 10- 
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3.8. Problem 3 

The third problem in the one-dimensional case is given by 

- E@’(x) + @(x) = &n2 sin ( n x )  + n cos(zx) 

with boundary conditions 
(fl(0) = 0, 4(1) = 0. 

Equation (24) is the same equation as (19) in Section 3.5, but the boundary conditions are 
different. 

Segal included this case, when there is no normal boundary layer, to consider whether the 
oscillations that occurred in his results for the previous two problems were due to the presence of 
a normal boundary layer or to the fact that the matrix was not always diagonally dominant. We 
also had oscillations occur for coarse grid sizes, which affected our results in several cases, but 
were able to avoid them by going to a smaller grid size. Although no table was included in Segal’s 
paper for this case, a graph was given which showed the central difference method O ( P )  to be 
more accurate than the Il’in scheme. In fact, Segal notes that the Il’in scheme ‘tried to generate a 
boundary layer’. 

To approximate the points in the interval for this problem, the same equation (21) was used as 
for problem 2 with the same values for the a, given by (12) and (22). Results are included for the 
fourth- and sixth-order methods in Tables XI11 and XIV. 

As can be seen by comparing Table XI11 with Table VIII and Table XIV with Table IX, the 
results for problem 3 are generally better than those of problem 2. Also, very accurate results were 
obtained for problem 3 using a smaller number of subdivisions than was possible in problem 2. 
For example, in Table XIV the error for E = 10- using 80 subdivisions is 10- but in Table IX 
for the same case the error is 09002. Also of interest is the error column for E = 10- in 
TableXIV. The results for this case are very accurate without using a divided interval. For 
E = 10- in problem 2 we had to use a divided interval to obtain a converged solution and the 
maximum error was 0 8  x 10- lo  in Table XII. 

Table XIII. Maximum error for fourth-order method, problem 3 

E = E =  1 0 - 3  = 10-4 & =  10-5 

n Maximum n Maximum n Maximum n , m  Maximum 
error error error error 

40 0.3 x 250 0.2 x 500 OOOO001 3000, 10 0.002 
80 0.2 x 500 0.4 x 1250 0.2 x lo-’ 3000, 20 0002 

3000,40 0002 

Table XIV. Maximum error for sixth-order method, problem 3 

E = & = 10- = 10-4 & = 10- 

n Maximum n Maximum n Maximum n Maximum 
error error error error 

40 0.4 x 250 0-1 x lo-’ 500 01  x lo-’ 2500 0.5 x 
80 0.1 x 10-7 1250 0.2 x lo-’ 5000 0.3 x lo-’ 
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Note that a standard five-point fourth-order method was also applied to these problems. The 
method was harder to use and the results were not as accurate as our fourth-order method. The 
defect correction method', ' 9  2 2  was also used on this problem. The results were similar to those of 
the central difference approximation and not nearly as good as the method of this paper. 

3.9. Problem 4 

The method described in this paper was also applied to the problem of solving some diffusion 
equations with concentration-dependent diffusion coefficients, which had been considered pre- 
viously by Lee" and later by Schultz.16 The method described in Reference 16 was more accurate 
and up to ten times faster than Lee's method. The method described in this paper was found to be 
superior to both. 

The problem to be considered is 

with s = 1 at x = 0 and s = 0 at x = + co. The condition 
Reference 16. 

This equation describes the problem of diffusion during 

at infinity can be handled as in 

the uptake of excess calcium by 
calcium fluoride. The solution is obtained for various values of A, where A is the critical 
concentration of trapped electrons. 

The method is developed similarly to the previous problems. 
Let c( = log(1 + A )  and write the equation in the form 

y" = - 2,yeQY ' Y .  

y"' and y'4) are developed from this equation and can be simplified to the following form: 

The equation is then approximated using only three points by 

y" + 2xeayy' = aoy0 + a , y ,  -t a 3 y 3 .  

Expanding y ,  and y ,  in Taylor series about zero, as before, we obtain the equations 

a, + L T I  + a3 = 13, 

hal - ha,= 2xecYy, 

h2eay h2ay"  2x2 h2(eay)2 h3ayV' h3x(eay)' h-yeQ.p + __ - -__ - ~ . _ _ _  - __- - 
3 6 3 12x 3 

h3 a 2 ( y " ) 2  h3 c(xeaY h3(eay)2x h3 axeaY y,, + h3x3(eay)3) 
3 

y" - +- 6 12 
+- 

4 
+ 

48xeaY 

It  can easily be shown that this gives an 0(h4)  method if we approximate y" in the normal way. 
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Table XV. Effects of h on diffusion problem 
from Reference 16 for A = 0 5  

h x = 0.1 x = 2.2 

0 1  0.87852 0.001 536 
005 0.87876 0.00161 5 
0025 0.87882 0-001635 
00125 0.87883 0001640 
0.01 0.87883 0001640 

Table XVI. Effects of h on diffusion prob- 
lem using (fourth-order) method of this 

paper for A = 0.5 

h x = 0 1  x = 2.2 

0.2 0001 630 
0.1 087884 0.00 1 640 
0.05 0.87884 0@01640 

Table XV gives the results from Reference 16 and Table XVI shows the results from our 
method. From the tables we can see that the results from our method with h = 0.1 are equivalent 
to the results for h=0.0125 given in Reference 16. 

4. EXTRAPOLATION 

For the one-dimensional case the error for the fourth-order method was 

E = eh4, 

where c is considered constant. Let 1, be the approximate value obtained by the fourth-order 
method using h as the step size and let I, be the approximate value obtained using k as the step 
size. Then an improved value I can be obtained by". 

For problem 1 an example was chosen from each of the values for E =  lo-' to lo-' for the 
fourth-order method. The maximum error of O-OOO8 for E = 10- ' with 125 subdivisions occurred 
when x = 0992. The value for lk was chosen for 250 subdivisions when x = 0.992. The error here 
was 000005. Using equation (25), a new approximation I was found with an error of 0000002, 
which is comparable to the error for the sixth-order method with 250 subdivisions. The results are 
summarized in Table XVII. Similar improvements could be made for the six-, eighth- and tenth- 
order methods. 

5. METHOD FOR TWO-DIMENSIONAL PROBLEMS 

The method is based on a nine-point approximation using a Taylor series expansion about the 
point +o which represents the function value at the point (xi, yi). Figure 5 shows the placement of 
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Table XVII. Extrapolation results for the fourth-order method 
from Section 3, problem 1 

~~ 

n or n, m 

E - 2  125 
250 

E -  3 1250 
2500 

1000,40 

1000,40 

E -  4 1000,20 

E -  5 1000,20 

X Error Error for I 

0.992 0~0008 0~000002 
0.992 0-00005 
0.9992 0.0008 ooooo02 
0.9992 0.00005 
0.99992 0.0001 OOOOOO4 
0.99992 00003 
0.999996 0.00012 0~o0o008 

OW01 8 

6fi 

3- - 
7 e  4'4 r 8  

Figure 5. Placement of points for two-dimensional problems 

the nine points. The differential equation is 

+,, + C$yy - o& + 2n2 sin (nx) sin (ny) t nw cos (nx) sin(ny) = 0, 

with the Dirichlet conditions 

4(0, Y) = 0, 4(1, Y) = 0, 44x7 0) = 0, 4 (x, 1) = 0. 
The subdivision in the x-direction is h = l/n and in the y-direction is k = l/m, where n and m are 
the numbers of subdivisions in the x- and y-direction respectively. 

Since the differential equation has the following function of x and y, 

2?t2 sin (nx) sin (ny) + 7cw cos (nx) sin (ny), 

on the left-hand side, a term ag was included to represent a function of x and y in the 
approximation. At each point ( x i ,  yi) we want to find the values ao, a l ,  . . . , ag such that the 
approximating equation is of the form 

8 

0 
4xx + cjYy - o4, + 2n2 sin(nx) sin (ny) + no cos (nx) sin (ny) x C ai4i + a9. (26) 

The values for the unknown coefficients ao, a l ,  . . . , a9 are again found by Taylor series 
expansion about the point q50: 

8 

4,, + C$yy - uC$, + 2n2sin(nx)sin(ny) + rat cos(nx)sin(ny) = C ai$i + a9 

= 40(ao + a1 + a2 + a3 + a4 + a5 .t a6 + a, + as) 

(27) 

(28) 

(29) 

(30) 

0 

+4xo(a1  - a3 + a5 - a6 - a7 + a 8 ) h  

+ +yo(a2 - a4 + a5 + a6 - a 7  - a 8 ) k  
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015 - a6 + a7 - = 0 ,  (56) 
a5 + a6 + a7 + a g  = 0 ,  (57) 

as - as + a7 - aa = 0, (58) 

ag = 2n2 sin (nx) sin (ny) + no cos (nx) sin(ny). (59) 
Equations (46) and (53) are duplicate equations so (53)  will be left out. The same is true for 

equations (48), (56) and (58). Therefore equations (56) and (58) are not needed. Also, equations (45) 
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and (50) cannot be true at the same time so we must go back and rewrite the Taylor series 
expansion. The same is true for equations (47) and (54) and again for equations (49) and (55). We 
will do this by rewriting the partial derivatives in the expressions (34), (38) and (39), which are the 
corresponding expressions for (50), (54) and (55) respectively. Therefore a replacement is needed 
for the partial derivatives CP,,, qbxxxx and $yyyy 

By first rewriting the differential equations as 

&, = w& - $yy - 2n2 sin(nx) sin(ny) - nmcos(nx)sin(ny), 

+,,, = cqbXX - +,,, - 2n3 cos (nx)  sin (ny) + n2 o sin (nx) sin (ny), 

(60) 

(61) 

it is possible to obtain the partials 

4,,,= 04,,, - +xxyy + 2n4 sin (nx) sin (ny) + n3 o cos (nx) sin (ny), 

which become 

~,,,, = w 2 d x x  - w&,, - 2wn3 cos (m) sin (ny) + n2w2 sin (nx) sin (ny) - 4xxyy 
+ 2n4 sin (nx) sin (xy )  + X ~ O C O S  (nx)  sin (ny) (62) 

when qb,,, is replaced by its equivalent from (61). 
By rewriting the differential equation as 

g$, = w4, - Cb,, - 27c2sin (nx)  sin (ny) - nw cos (nx) sin (ny) 

4,,,, = wqbxy, - (pxXyy + 2n4 sin (nx) sin (nyf + 7r3w cos (EX) sin (ny). 

and taking the partial derivatives with respect to y twice, we obtain 

(63) 
If we substitute the partial derivatives obtained in (61), (62) and (63) into expressions (34), (38) 

and (39) and then equate corresponding coefficients with (26), we obtain the following system of 
ten equations and ten unknowns: 

a0 + + a2 + a3 + a4 + a5 + a,j + a7 + ug = 0, (64) 

(65) 

(66) 

a1 - a3 + a5 - a6 - a7 + ug = - wJh, 

a2 - a4 + a5 + c(6 - a7 - ag = 0 ,  

hZ 
- w - = 1 (a1 + a3 + as + a6 + a7 + a g )  - + 0 2 - -  ( y  :a> 2 6  ’ 

4 - a6 + a7 - ag = 0 ,  

2 
k 

a2 + a4 + a5 + 0 1 ~  + a7 + ag = i, 

ag + [ - 2n3 cos (nx) sin (ny) + n 2 0  sin (nx) sin (ny)] - - ( ;)(:) 
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+ [ - 2wn3 cos(nx)sin(ny) + n2w2 sin (nx) sin(ny) + 2n4 sin (ZX) sin (ny) 

kZ 
12 

+ n30 cos (nx) sin ( ~ y ) ]  - = 2n2 sin (nx) sin (ny) + nw cos (ZX) sin (ny). (73) 

The following are the steps used to solve the system of equations in (64)<73). 

(a) Combine (68) with (70) giving as = as. 
(b) Equation (65) minus (68) gives a1 - a3 = 201, - 2a8 - o/h. 
(c) Equation (65) minus (70) gives a, - a j  = 2a6 - 2a8 - w/k. 
(d) Set equation (b) equal to (c) giving a7 = a6. 
(e) Equation (67) can be written as 

4(6 + o z h Z )  
12h2 + 0 2 h 4  + a3 + a5 + a6 + a7 + = 

( f  ) Substitute equation (e) in (72). 
(g) Substitute equations (a) and (d) in ( f ) giving an expression for as + a6. 
(h) Equation (66) plus (69) gives a2 + a5 + a6 = !/k2. 
(i) Substitute equation (8) in (h) giving an expression for az .  
(j) Equations (a) and (d) in (66) gives a, = az .  
(k) Equations (a), (d) and (e) in (71) solves for as - c(6. 
(1) Equation (g) plus (k) solves for as.  
(m) The remaining unknown values for the ai can now be found in terms of the values already 

found in steps (aH1). 

Since the values ao, a l ,  . . . , ag can be complicated, no attempt was made to simplify these 
expressions. All were used as listed below in the computer program. The coefficients for the 
approximating equation in (26)  are 



280 s. K. DEKEMA AND D. H. scHuLrz 

h2 
6 ug = 2n2 sin (nx)  sin (ny) + no cos ( n x )  sin (ny) + w - [ - 2n3 cos (nx)  sin (ny) 

+ x2a  sin (nx)  sin (ny)]  + [2wn3 cos (nx)  sin (ny) - n 2 a 2  sin (nx)  sin(ny) 

k 2  + x 3 0  cos (nx)  sin (ny)] - . 
12 

The error term for the approximation is 

5.1. Approximating equation for  Neumann boundary condition 

The second problem in the two-dimensional case has a Neumann boundary condition at x = 1 
of +x = n cos (nx) sin (ny). Therefore a new equation must be developed for the nodes when x = 1. 

The points to be used are arranged as in Figure 6 .  The approximation used is 

4 x  = a040 + a141 + f f 2 4 2  + @ 3 + 3  + a444, 
where 

The error term is determined from the Taylor series expansion as 

E =: - $ h4 ~,,,,, . 
The results for central differences are given in Table XVIII and the results from the method of 

this paper are given in Table XIX. Note that the results of this paper are considerably better than 
the central difference results. 

For the second problem with a Neumann boundary condition when x = 1, Segal chose equal 
subdivisions on the x -  and y-axis of n = 10 and n = 20. Table XX gives the results using the 

a a - 1  - - - - +  
4 3 2 1  0 

h 

Figure 6. Arrangement of points for Neumann boundary condition at x = 1 

Table XVIII. Maximum error for central difference (Dirichlet 
boundary conditions) 

5 x 5  0.03 0.03 0.03 0.03 
10 x 10 0 0 0 8  0.008 0.008 0.008 
20 x 20 0002 oa02 0.002 0.002 
40 x 40 0.0005 0.0005 0.0005 0.0005 
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central difference scheme, upwind difference scheme and defect correction method. The most 
accurate of the three methods for this problem was the central difference scheme. 

Equal subdivisions in the x- and y-direction also gave accurate results for the second problem 
using the equations developed in Section 5. In Table XXI the maximum error is shown for n 
subdivisions of 10, 20 and 40. 

Our maximum errors were constant from problem 1 to problem 2. The results for n = 10 and 
E = 10- 2, 10- and 10- are better than Segal's central difference errors by a factor of over 50, 
while our results for n = 20 are better by a factor of 200. 

For the last problem" the equation is 

4 x x  + 4 y y  + 0 4 x  = 0, 
with 

Table XIX. Maximum error for problem 1 with Dirich- 
let boundary conditions and n subdivisions in the x- and 

y-direction 

10 0.0003 0.0003 0.0003 OG003 
20 0.00002 0~00002 000002 0~00002 
40 0000002 0*000002 0.000002 0.000002 

Table XX. Segal's maximum errors for Neumann boundary 
condition at x = 1, problem 2 

Central 10 0.017 0017 0.017 
difference 20 0.004 0004 0.004 
Upwind 10 0.306 0.309 0.309 
difference 20 0.154 0.156 0156 
Defect 10 0.080 0.08 1 008 1 
correction 20 0.039 0040 0040 

Table XXI. Maximum error for problem 2 with 
Neumann boundary condition at x = 1 

n &=10-2  EZ10-3 E z 1 0 - 4  & = 1 0 - 5  

10 0.003 0.003 0.003 0.003 
20 000002 0~00002 0.00002 O~ooo02 
40 0~000002 OW0002 0~000002 0000002 
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Note that this problem has a boundary layer. The approximating equation is similar to the last 
problem. The method is stable and converged rapidly for all values of o attempted. The results 
were again much better than the central difference results, which converged only for small w. 
As an example, for w = 10 and a grid of 10 x 20 the central differences had a maximum error 
of 0.2 x 10- while we had a maximum error of only 0.3 x See Figures 7 and 8 for a 
comparison of the fourth-order method and the central difference technique for w = 40 and a 
grid of 20 x 20. Note that the exact results and the fourth-order results coincide. 

6. RESULTS 

Our results were more accurate for all problems tested, except for one case where the results were 
comparable. The first problem in the one-dimensional case was the only problem where Segal's 
results were comparable to ours. Our best case gave an error of 10- l4 in a tenth-order method 
and Segal's best error was 10- l 5  using the Il'in method. However, for the second and third 

Figure 7. Problem 3, exact and fourth-order results, two dimensions, 20 x 20 grid, w = I/& = 40. The results of the 
fourth-order method and the exact reslts coincide. Most of the results are close to zero 

Figure 8. Problem 3, two dimensions, 20 x 20 grid, w = I/& = 40, central differences 
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problems the Il’in method gave very poor results and the central difference scheme O(h2) had a 
maximum error of 0005 for problem 2. For comparable subdivisions (marked with a and in the 
tables) with E =  to lo-’, our worst result for problem 2 using the fourth-order method was 
04009 while our best result was considerably better, 0.00005. Also, we were able to improve these 
results by using a higher-order method and going to more subdivisions. The results given in 
Table XI1 are considerably better than Segal’s results in Table VII. 

7. DIFFICULTY OF METHOD 

One consideration in the use of any method might be phrased: ‘How difficult is it’to apply?’ 
For the simplest problem, the equation was given in (4) as 

f#l“(x) - wf#l’(x) = 0. 

No constant term was needed in the Taylor series expansion and the resulting system of three 
equations with three unknowns was easily solved for the fourth-order method. To increase the 
order of the method, more terms were included in the Taylor series expansion, but the values of a. 
and a1 were the same as those found for the fourth-order approximating equation. The value of a3 
was the only one to change. This change was simply a matter of including more terms in a3 than 
used for the previous method. 

When a constant term a4 had to be included in the development of the approximating equation 
for (20), the values for a0, a1 and a3 were no different than those for problem 1. The constant a4 
was long but easily written in terms of a3. Again, to increase the order of the method, the values of 
ao, a1 and a3 did not change and a4 was found by adding terms to the Taylor series expansion. 
The expression became lengthy but not difficult to find or express in terms of a3. 

8. CONCLUSIONS 

We have developed a numerical method that can be applied to both one-dimensional and two- 
dimensional fluid flow problems governed by Navier-Stokes equations. The order of the two- 
dimensional method is O(h4). For the one-dimensional problem, results were included for fourth-, 
sixth-, eighth- and tenth-order methods. 

The results of the method were accurate. Only in one case was Segal’s results comparable to 
ours. However, from Section 4 we see that extrapolation improves our results. Also, the method 
used by Segal did not give accurate answers for the second problem in the one-dimensional case. 
Our results were accurate for all problems considered from E = 10- to 10- and the method 
could be generalized to both one- and two-dimensional problems. This was not true for any of the 
other methods tested. 
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